
Neural Networks and 
Neural Language Models

Natalie Parde, Ph.D.
Department of Computer 
Science
University of Illinois at 
Chicago

CS 421: Natural Language 
Processing
Fall 2019

Many slides adapted from Jurafsky and Martin 
(https://web.stanford.edu/~jurafsky/slp3/).

https://web.stanford.edu/~jurafsky/slp3/


What are 
neural 

networks?

• Classification models comprised of 
interconnected computing units, or 
neurons, (loosely!) mirroring the 
interconnected neurons in the human brain

10/22/19 Natalie Parde - UIC CS 421 2



Neural 
networks 

are an 
increasingly 
fundamental 

tool for 
natural 

language 
processing.

ACL Year # Paper Titles with “Neural” % Paper Titles with “Neural”
2000 0 0
2001 0 0
2002 0 0
2003 0 0
2004 1 1/137 = 0.7%
2005 0 0
2006 0 0
2007 1 1/207 = 0.5%
2008 0 0
2009 1 1/248 = 0.4%
2010 0 0
2011 0 0
2012 0 0
2013 5 5/399 = 1.3%
2014 11 11/333 = 3.3%
2015 36 36/363 = 9.9%
2016 49 49/390 = 12.6%
2017 81 81/357 = 22.7%
2018 138 138/674 = 20.5%
2019 197 197/1449 = 13.6%

10/22/19 Natalie Parde - UIC CS 421 3



Are neural networks new?
1943: First 

mathematical 
NN model1

1McCulloch, W. S., and W. Pitts. "A logical calculus of the ideas immanent in nervous 
activity." The bulletin of mathematical biophysics 5.4 (1943): 115-133.

1957: The 
perceptron is 

proposed2

2Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton Project 
Para. Cornell Aeronautical Laboratory.

1971: Implementation 
of feedforward network 

with 8 layers3

3Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE transactions on Systems, 
Man, and Cybernetics, (4), 364-378.

1982: First 
convolutional 

neural network4

4Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organizing neural network model for a 
mechanism of visual pattern recognition. In Competition and cooperation in neural nets (pp. 267-
285). Springer, Berlin, Heidelberg.

1982: First 
recurrent neural 

network5

5Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.
10/22/19 Natalie Parde - UIC CS 421 4



Why haven’t they 
been a big deal 
until recently then?

• Data
• Computing power

10/22/19 Natalie Parde - UIC CS 421 5



Neural networks 
are everywhere!

10/22/19 Natalie Parde - UIC CS 421 6



Neural 
Network 

Basics

• Neural networks are comprised of small 
computing units

• Each computing unit takes a vector of 
input values

• Each computing unit produces a single 
output value

• Many different types of neural networks 
exist

10/22/19 Natalie Parde - UIC CS 421 7



Types of Neural 
Networks

• Feedforward Neural Network
• Convolutional Neural Network
• Recurrent Neural Network
• Generative Adversarial Network
• Sequence-to-Sequence Network
• Autoencoder
• Transformer

10/22/19 Natalie Parde - UIC CS 421 8



Feedforward 
Neural 

Networks

• Earliest and simplest form of neural network
• Data is fed forward from one layer to the next
• Each layer:

• One or more units
• A unit in layer n receives input from all units 

in layer n-1 and sends output to all units in 
layer n+1

• A unit in layer n does not communicate with 
any other units in layer n

• The outputs of all units except for those in the 
last layer are hidden from external viewers

10/22/19 Natalie Parde - UIC CS 421 9



Feedforward Neural Networks

Input Output

10/22/19 Natalie Parde - UIC CS 421 10



What is 
deep 
learning?

Why?

Modern networks often have many 
layers (in other words, they’re deep)

People often tend to refer to 
neural network-based machine 

learning as deep learning

10/22/19 Natalie Parde - UIC CS 421 11



Deep Learning

Input Output

10/22/19 Natalie Parde - UIC CS 421 12



Deep Learning

Input Output

10/22/19 Natalie Parde - UIC CS 421 13



Deep Learning

Input Output

10/22/19 Natalie Parde - UIC CS 421 14



Deep 
Learning

Input Output Input Output

Input Output

😒🤷

🥳
10/22/19 Natalie Parde - UIC CS 421 15



Neural 
networks tend 

to be more 
powerful than 

traditional 
classification 

algorithms.

• Traditional classification algorithms usually 
assume that data is linearly separable

• In contrast, neural networks learn nonlinear 
functions

10/22/19 Natalie Parde - UIC CS 421 16



Neural networks 
also commonly 

use different 
types of features 
from traditional 
classification 
algorithms.

• Manually engineer a set of features and 
extract them for each instance
• Part-of-speech label
• Number of exclamation marks
• Sentiment score

Traditional classification

• Implicitly learn features as part of the 
classifier’s training process
• Just use word embeddings as input

Neural networks

10/22/19 Natalie Parde - UIC CS 421 17



Neural 
networks 

aren’t 
necessarily 

the best 
classifier for 

all tasks!

Learning features implicitly requires a lot of data

In general, deeper network → more data needed

Thus, neural nets tend to work very well for large-
scale problems, but not that well for small-scale 
problems

10/22/19 Natalie Parde - UIC CS 421 18



Building 
Blocks for 

Neural 
Networks

• At their core, neural networks are 
comprised of computational units

• Computational units:
1. Take a set of real-valued numbers as 

input
2. Perform some computation on them
3. Produce a single output

0.5

0.2

1.7

0.9

5.6

0.3

4.2

1.4

1

10/22/19 Natalie Parde - UIC CS 421 19



Computational 
Units

• The computation performed by each 
unit is a weighted sum of inputs

• Assign a weight to each input
• Add one additional bias term

• More formally, given a set of inputs 
𝑥", … , 𝑥%, a unit has a set of 
corresponding weights 𝑤",… ,𝑤% and 
a bias 𝑏, so the weighted sum 𝑧 can 
be represented as:

• 𝑧 = 𝑏 + ∑, 𝑤,𝑥,

10/22/19 Natalie Parde - UIC CS 421 20



Computational 
Units

• Recall that our classification input is 
some sort of word embedding or 
other feature vector

• Thus, letting 𝑤 be the weight vector 
and 𝑥 be the input vector (a word 
embedding or feature vector), we 
can also represent the weighted sum 
𝑧 using vector notation:

• 𝑧 = 𝑤 - 𝑥 + 𝑏

10/22/19 Natalie Parde - UIC CS 421 21



Computational 
Units

• The equation thus far still computes 
a linear function of 𝑥!

• Recall that neural networks learn 
nonlinear functions

• These nonlinear functions are 
commonly referred to as activations

• The output of a computation unit is 
thus the activation value for the 
unit, 𝑦

• 𝑦 = 𝑓 𝑧 = 𝑓(𝑤 - 𝑥 + 𝑏)

10/22/19 Natalie Parde - UIC CS 421 22



There are many different activation 
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid

10/22/19 Natalie Parde - UIC CS 421 23



There are many different activation 
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid

10/22/19 Natalie Parde - UIC CS 421 24



Sigmoid 
Activation

• Recall the sigmoid function from Word2Vec:
• 𝜎 𝑥 = "

"3456

• The sigmoid activation simply sets 𝑥 to the 
linear combination of weights and bias 𝑧

• 𝑦 = 𝜎 𝑧 = "
"3457 =

"
"3458-69:

10/22/19 Natalie Parde - UIC CS 421 25



Advantages of Sigmoid Activation

• Maps the unit’s output to 
a [0,1] range

• Squashes outliers
• Differentiable (useful for 

learning)
• You need to be able 

to differentiate 
functions to optimize 
(minimize/maximize) 
them

10/22/19 Natalie Parde - UIC CS 421 26



Computational Unit with Sigmoid 
Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

10/22/19 Natalie Parde - UIC CS 421 27



Computational Unit with Sigmoid 
Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Note that 𝑎 ≠ 𝑦 by default! Recall that 𝑦 is the 
final output of the entire network, whereas 𝑎 is 
the activation of the individual node.

10/22/19 Natalie Parde - UIC CS 421 28



Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Input: “pumpkin spice latte”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0
10/22/19 Natalie Parde - UIC CS 421 29



Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Input: “pumpkin spice latte”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g., averaged 
Word2Vec embeddings for 
“pumpkin,” “spice,” and “latte”)

[0.5, 0.6]

10/22/19 Natalie Parde - UIC CS 421 30



Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Input: “pumpkin spice latte”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g., averaged 
Word2Vec embeddings for 
“pumpkin,” “spice,” and “latte”)

[0.5, 0.6]

0.5 * 0.2 = 0.1

0.6 * 0.3 = 0.18

1.0 * 0
.5 = 0.5

10/22/19 Natalie Parde - UIC CS 421 31



Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Input: “pumpkin spice latte”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g., averaged 
Word2Vec embeddings for 
“pumpkin,” “spice,” and “latte”)

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

10/22/19 Natalie Parde - UIC CS 421 32



Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Input: “pumpkin spice latte”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g., averaged 
Word2Vec embeddings for 
“pumpkin,” “spice,” and “latte”)

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

10/22/19 Natalie Parde - UIC CS 421 33



Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Input: “pumpkin spice latte”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g., averaged 
Word2Vec embeddings for 
“pumpkin,” “spice,” and “latte”)

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒?@.BC = 0.686

10/22/19 Natalie Parde - UIC CS 421 34



Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Input: “pumpkin spice latte”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g., averaged 
Word2Vec embeddings for 
“pumpkin,” “spice,” and “latte”)

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒?@.BC = 0.686

10/22/19 Natalie Parde - UIC CS 421 35



Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Input: “pumpkin spice latte”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g., averaged 
Word2Vec embeddings for 
“pumpkin,” “spice,” and “latte”)

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.686

0.686

10/22/19 Natalie Parde - UIC CS 421 36



Remember, there are many different 
activation functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid

10/22/19 Natalie Parde - UIC CS 421 37



Particularly Common Activation 
Functions

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid

10/22/19 Natalie Parde - UIC CS 421 38



Activation: 
tanh

• Variant of sigmoid that ranges from -1 to +1
• 𝑦 = 47?457

473457

• Once again differentiable
• Larger derivatives → generally faster 

convergence

10/22/19 Natalie Parde - UIC CS 421 39



Example: Computational Unit with 
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a

Input: “pumpkin spice latte”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g., averaged 
Word2Vec embeddings for 
“pumpkin,” “spice,” and “latte”)

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

10/22/19 Natalie Parde - UIC CS 421 40



Example: Computational Unit with 
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a

Input: “pumpkin spice latte”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g., averaged 
Word2Vec embeddings for 
“pumpkin,” “spice,” and “latte”)

[0.5, 0.6]

0.1

0.18

0.5

0.78

𝑒G − 𝑒?G

𝑒G + 𝑒?G

10/22/19 Natalie Parde - UIC CS 421 41



Example: Computational Unit with 
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a

Input: “pumpkin spice latte”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g., averaged 
Word2Vec embeddings for 
“pumpkin,” “spice,” and “latte”)

[0.5, 0.6]

0.1

0.18

0.5

0.78
𝑒@.BC − 𝑒?@.BC

𝑒@.BC + 𝑒?@.BC = 0.653

10/22/19 Natalie Parde - UIC CS 421 42



Example: Computational Unit with 
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a = 0.653

Input: “pumpkin spice latte”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g., averaged 
Word2Vec embeddings for 
“pumpkin,” “spice,” and “latte”)

[0.5, 0.6]

0.1

0.18

0.5

0.78
𝑒@.BC − 𝑒?@.BC

𝑒@.BC + 𝑒?@.BC = 0.653

10/22/19 Natalie Parde - UIC CS 421 43



Example: Computational Unit with 
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a = 0.653

Input: “pumpkin spice latte”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g., averaged 
Word2Vec embeddings for 
“pumpkin,” “spice,” and “latte”)

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.653

0.653

10/22/19 Natalie Parde - UIC CS 421 44



Activation: 
ReLU

• Ranges from 0 to ∞
• Simplest activation function:

• 𝑦 = max(𝑧, 0)
• Very close to a linear function!
• Quick and easy to compute

10/22/19 Natalie Parde - UIC CS 421 45



Example: Computational Unit with 
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a

Input: “pumpkin spice latte”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g., averaged 
Word2Vec embeddings for 
“pumpkin,” “spice,” and “latte”)

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

10/22/19 Natalie Parde - UIC CS 421 46



Example: Computational Unit with 
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a

Input: “pumpkin spice latte”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g., averaged 
Word2Vec embeddings for 
“pumpkin,” “spice,” and “latte”)

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78 max(𝑧, 0)

10/22/19 Natalie Parde - UIC CS 421 47



Example: Computational Unit with 
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a

Input: “pumpkin spice latte”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g., averaged 
Word2Vec embeddings for 
“pumpkin,” “spice,” and “latte”)

[0.5, 0.6]

0.1

0.18

0.5

0.78 max(𝑧, 0) = 0.78

10/22/19 Natalie Parde - UIC CS 421 48



Example: Computational Unit with 
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a = 0.78

Input: “pumpkin spice latte”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g., averaged 
Word2Vec embeddings for 
“pumpkin,” “spice,” and “latte”)

[0.5, 0.6]

0.1

0.18

0.5

0.78 max(𝑧, 0) = 0.78

10/22/19 Natalie Parde - UIC CS 421 49



Example: Computational Unit with 
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a = 0.78

Input: “pumpkin spice latte”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g., averaged 
Word2Vec embeddings for 
“pumpkin,” “spice,” and “latte”)

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.78

0.78

10/22/19 Natalie Parde - UIC CS 421 50



Comparing sigmoid, tanh, and ReLU

10/22/19 Natalie Parde - UIC CS 421 51



Combining 
Computational 
Units

Neural networks are powerful primarily 
because they are able to combine multiple 
computational units into larger networks

Many problems cannot be solved using a 
single computational unit

10/22/19 Natalie Parde - UIC CS 421 52



The XOR 
Problem

Early example of why 
networks of computational 

units were necessary to solve 
some problems

AND OR XOR
x1 x2 y x1 x2 y x1 x2 y
0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

10/22/19 Natalie Parde - UIC CS 421 53



What is a perceptron?
• A function that outputs a binary value based on whether or not the 

product of its inputs and associated weights surpasses a threshold
• Learns this threshold iteratively by trying to find the boundary that is 

best able to distinguish between data of different categories

x1

x2

b

w1

w2

wb

∑

𝑦 = P0, if 𝑤 - 𝑥 + 𝑏 ≤ 0
1, if 𝑤 - 𝑥 + 𝑏 > 0

10/22/19 Natalie Parde - UIC CS 421 54



It’s easy to 
compute 

AND and OR 
using 

perceptrons.

x1

x2

b

w1

w2

wb

∑

! = 	 $0, if	) * + + - ≤ 0
1, if	) * + + - > 0

10/22/19 Natalie Parde - UIC CS 421 55



It’s easy to 
compute 

AND and OR 
using 

perceptrons.

AND

x1

x2

b

w1

w2

wb

∑

! = 	 $0, if	) * + + - ≤ 0
1, if	) * + + - > 0

1

1

1 -1

10/22/19 Natalie Parde - UIC CS 421 56



It’s easy to 
compute 

AND and OR 
using 

perceptrons.

OR

x1

x2

b

w1

w2

wb

∑

! = 	 $0, if	) * + + - ≤ 0
1, if	) * + + - > 0

1

1

1 0

10/22/19 Natalie Parde - UIC CS 421 57



However, it’s 
impossible 
to compute 

XOR using a 
single 

perceptron.

• Why?
• Perceptrons are linear classifiers

• Linear classifiers learn a decision 
boundary that divides a dataset into two 
parts

• All data on one side of the decision 
boundary is assigned a label of 0

• All data on the other side of the decision 
boundary is assigned a label of 1

• However, it is impossible to draw a single 
line that separates the positive and negative 
cases of XOR

• XOR is not a linearly separable 
function

10/22/19 Natalie Parde - UIC CS 421 58



XOR Cases

AND OR XOR
x1 x2 y x1 x2 y x1 x2 y
0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

x1

x2

0

1

1

10/22/19 Natalie Parde - UIC CS 421 59



The only way to compute XOR is by 
combining perceptrons!

x1

x2

b

w1

w2

wb

∑

∑
w1

w2

wb

∑
w1

w2

y

b

wb

10/22/19 Natalie Parde - UIC CS 421 60



However, since XOR is not a linearly separable 
function, we’ll have to use a nonlinear activation.

x1

x2

b

w1

w2

wb

∑ ReLU

∑ ReLU
w1

w2

wb

∑ ReLU
w1

w2

y

b

wb

𝑦 = max(𝑧, 0)

10/22/19 Natalie Parde - UIC CS 421 61



The resulting neural network, with the 
weights below, can successfully solve XOR.

x1

x2

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

10/22/19 Natalie Parde - UIC CS 421 62



Truth Table Examples: XOR

x1

x2

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

10/22/19 Natalie Parde - UIC CS 421 63



Truth Table Examples: XOR

0

0

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

10/22/19 Natalie Parde - UIC CS 421 64



Truth Table Examples: XOR

0

0

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

0

0

0

0

-1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

10/22/19 65Natalie Parde - UIC CS 421



Truth Table Examples: XOR

0

0

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

0

0

0

0

-1

0

-1

0

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

10/22/19 66Natalie Parde - UIC CS 421



Truth Table Examples: XOR

0

0

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

0

0

0

0

-1

0

-1

0

0

0

0

0

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

10/22/19 67Natalie Parde - UIC CS 421



Truth Table Examples: XOR

0

0

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

0

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

0

0

0

0

-1

0

-1

0

0

0

0

0

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

10/22/19 68Natalie Parde - UIC CS 421



Truth Table Examples: XOR

x1

x2

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

10/22/19 69Natalie Parde - UIC CS 421



Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

10/22/19 70Natalie Parde - UIC CS 421



Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

10/22/19 71Natalie Parde - UIC CS 421



Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

10/22/19 72Natalie Parde - UIC CS 421



Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

10/22/19 73Natalie Parde - UIC CS 421



Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

10/22/19 74Natalie Parde - UIC CS 421



Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

10/22/19 75Natalie Parde - UIC CS 421



Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

1

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

10/22/19 76Natalie Parde - UIC CS 421



Truth Table Examples: XOR

x1

x2

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

10/22/19 77Natalie Parde - UIC CS 421



Truth Table Examples: XOR

1

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
1

1

0

1

1

-1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

10/22/19 78Natalie Parde - UIC CS 421



Truth Table Examples: XOR

1

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
1

1

0

1

1

-1

2

1

2

1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

10/22/19 79Natalie Parde - UIC CS 421



Truth Table Examples: XOR

1

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
1

1

0

1

1

-1

2

1

2

1

2

-2

0

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

10/22/19 80Natalie Parde - UIC CS 421



Truth Table Examples: XOR

1

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

0

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
1

1

0

1

1

-1

2

1

2

1

2

-2

0

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

10/22/19 81Natalie Parde - UIC CS 421



The hidden layer in the previous examples provides 
new representations for the input.

1

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

0

1

0

1

1

0

1

1

-1

2

1

2

1

2

-2

0

0

ReLU

ReLU

ReLU

h0

h1

10/22/19 Natalie Parde - UIC CS 421 82



The hidden layer in the previous examples provides 
new representations for the input.

1

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

0

1

0

1

1

0

1

1

-1

2

1

2

1

2

-2

0

0

ReLU

ReLU

ReLU

h0

h1

XOR

h0 h1 y

0 0 0

1 0 1

2 1 0

10/22/19 Natalie Parde - UIC CS 421 83



The new representations are linearly 
separable!

XOR

h0 h1 y

0 0 0

1 0 1

2 1 0

h0

0
1

1

2

h1

10/22/19 Natalie Parde - UIC CS 421 84



Combining 
Computational 

Units

• In our XOR example, we manually assigned 
weights to each unit

• In real-world examples, these weights are 
learned automatically using a 
backpropagation algorithm

• Thus, the network is able to learn a useful 
representation of the input training data on 
its own

• Key advantage of neural networks

10/22/19 Natalie Parde - UIC CS 421 85



Summary: 
Neural 

Networks 
(Basics)

• Neural networks are classification models comprised of 
interconnected computational units (neurons)

• They play an increasingly fundamental role in solving many NLP 
tasks

• There are many varieties of neural networks
• Feedforward
• Convolutional
• Recurrent
• Etc….

• Neural networks with multiple layers are deep neural networks
• Neural networks can learn to separate data that is not linearly 

separable using nonlinear functions
• These activation functions can come in many forms

• sigmoid
• tanh
• ReLU

• Perceptrons are basic linear functions that output binary values 
depending on whether the product of a set of inputs and weights 
exceeds a threshold

10/22/19 Natalie Parde - UIC CS 421 86



What are 
feedforward 

networks?

• Multilayer neural network in which the units 
are connected with no cycles

• Outputs from layer n-1 are passed to 
units in layer n

• Outputs from layer n are never passed 
to layer n-1

10/22/19 Natalie Parde - UIC CS 421 87



Feedforward Networks

Input Output

x1

x2

b

w1

w2

wb

∑ 	" yz = 0.78 a = 0.686

0.1

0.18

0.5

0.78 0.686

0.686

1

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

0

1

0

1

1

0

1

1

-1

2

1

2

1

2

-2

0

0

ReLU

ReLU

ReLU

10/22/19 Natalie Parde - UIC CS 421 88



Feedforward 
Networks

• Technically, no longer an accurate title 
…modern feedforward networks use 
units with nonlinear activations, not 
linear perceptrons!

Historically, sometimes called 
multilayer perceptrons (MLPs)

• Input units
• Hidden units
• Output units

Three types of units, or nodes:

10/22/19 Natalie Parde - UIC CS 421 89



Input Units
• Vector of scalar values

• Word embedding
• Other feature vector

• No computations performed 
in input units

0.5 0.2 0.1 0.7 0.4

10/22/19 Natalie Parde - UIC CS 421 90



Hidden Units

• Computation units
• As described previously, 

take a weighted sum of 
inputs and apply a 
nonlinear function to it

• Contained in one or more 
layers

• Layers are fully connected
• All units in layer n receive 

inputs from all units in 
layer n-1

• Layer n-1 can be the 
input layer or an 
earlier hidden layer

10/22/19 Natalie Parde - UIC CS 421 91



Hidden 
Layers

• Remember: Individual computation units 
have parameters w (the weight vector) and 
b (the bias)

• The parameters for an entire hidden layer 
(including all computation units within that 
layer) can then be represented as:

• W: Weight matrix containing the weight 
vector wi for each unit i

• b: Bias vector containing the bias value 
bi for each unit i

• Single bias for layer, but each unit can 
associate a different weight with the bias

• Wij represents the weight of the connection 
from input unit xi to hidden unit hj

10/22/19 Natalie Parde - UIC CS 421 92



Why represent W as a single matrix?

• More efficient computation across the entire layer
• Use matrix operations!

• Multiply the weight matrix by input vector x
• Add the bias vector b
• Apply the activation function g (e.g., sigmoid, tanh, or ReLU)

• This means that we can compute a vector h representing the 
output of a hidden layer as follows:

• h = 𝜎(𝑊x + b)

10/22/19 Natalie Parde - UIC CS 421 93



Example: Computing h across an 
entire hidden layer

1

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

0

1

0

1

1

0

1

1

-1

2

1

2

1

2

-2

0

0

ReLU

ReLU

ReLU

10/22/19 Natalie Parde - UIC CS 421 94



Example: Computing h across an 
entire hidden layer

1

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

0

1

0

1

1

0

1

1

-1

2

1

2

1

2

-2

0

0

ReLU

ReLU

ReLU

10/22/19 Natalie Parde - UIC CS 421 95



Example: Computing h across an 
entire hidden layer

1

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

0

1

0

1

1

0

1

1

-1

2

1

2

1

2

-2

0

0

ReLU

ReLU

ReLU

w1 = 1 1

w2 = 1 1
b = 0

−1
10/22/19 Natalie Parde - UIC CS 421 96



Example: Computing h across an 
entire hidden layer

1

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

0

1

0

1

1

0

1

1

-1

2

1

2

1

2

-2

0

0

ReLU

ReLU

ReLU

w1 = 1 1

w2 = 1 1
b = 0

−1

W = 1 11 1
x = 11

10/22/19 Natalie Parde - UIC CS 421 97



Example: Computing h across an 
entire hidden layer

1

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

0

1

0

1

1

0

1

1

-1

2

1

2

1

2

-2

0

0

ReLU

ReLU

ReLU

w1 = 1 1

w2 = 1 1
b = 0

−1

W = 1 11 1
x = 11

h = ReLU 𝑊x + b
= ReLU 1 1

1 1
1
1 + 0

−1

10/22/19 Natalie Parde - UIC CS 421 98



Example: Computing h across an 
entire hidden layer

1

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

0

1

0

1

1

0

1

1

-1

2

1

2

1

2

-2

0

0

ReLU

ReLU

ReLU

w1 = 1 1

w2 = 1 1
b = 0

−1

W = 1 11 1
x = 11

h = ReLU 𝑊x + b
= ReLU 1 1

1 1
1
1 + 0

−1
= ReLU( 1 ∗ 1 + 1 ∗ 11 ∗ 1 + 1 ∗ 1 + 0

−1 )

= ReLU 2
2 + 0

−1
10/22/19 Natalie Parde - UIC CS 421 99



Example: Computing h across an 
entire hidden layer

1

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

0

1

0

1

1

0

1

1

-1

2

1

2

1

2

-2

0

0

ReLU

ReLU

ReLU

w1 = 1 1

w2 = 1 1
b = 0

−1

W = 1 11 1
x = 11

h = ReLU 𝑊x + b
= ReLU 1 1

1 1
1
1 + 0

−1
= ReLU( 1 ∗ 1 + 1 ∗ 11 ∗ 1 + 1 ∗ 1 + 0

−1 )

= ReLU 2
2 + 0

−1 = ReLU 2
1

10/22/19 Natalie Parde - UIC CS 421 100



Example: Computing h across an 
entire hidden layer

1

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

0

1

0

1

1

0

1

1

-1

2

1

2

1

2

-2

0

0

ReLU

ReLU

ReLU

w1 = 1 1

w2 = 1 1
b = 0

−1

W = 1 11 1
x = 11

h = ReLU 𝑊x + b
= ReLU 1 1

1 1
1
1 + 0

−1
= ReLU( 1 ∗ 1 + 1 ∗ 11 ∗ 1 + 1 ∗ 1 + 0

−1 )

= ReLU 2
2 + 0

−1 = ReLU 2
1

= 2
1

10/22/19 Natalie Parde - UIC CS 421 101



Formal Definitions
• An input (layer 0) vector x has a dimensionality of n0, where n0 is the 

number of inputs
• So, 𝑥 ∈ ℝ%`

• The subsequent hidden layer (layer 1) has dimensionality n1, where n1 is 
the number of hidden units in the layer

• So, ℎ ∈ ℝ%b and 𝑏 ∈ ℝ%b (remember, b contains the different weighted 
bias values associated with each hidden unit)

• The weight matrix thus has the dimensionality 𝑊 ∈ ℝ%b×%`

10/22/19 Natalie Parde - UIC CS 421 102



Hidden layers form 
new representations 

for input vectors.

• Goal of the output layer:
• Take the new 

representation, h, and 
compute a final 
output

• What does the final output 
look like?

• Real-valued number
• Discrete label

XOR

h0 h1 y

0 0 0

1 0 1

2 1 0

0
1

1

2

h1

10/22/19 Natalie Parde - UIC CS 421 103



Output Units
• Provide probabilities 

indicating whether the input 
belongs to a given class

• Number of output units can 
vary:

• Binary classification 
might have a single 
output unit

• Multinomial classification 
(e.g., part-of-speech 
tagging) might have an 
output unit for each class

10/22/19 Natalie Parde - UIC CS 421 104



Output 
Layer

• Provides a probability distribution across 
the output nodes

• How?
• Output layer also has a weight matrix, U
• Bias vector is optional
• Following intuition/examples, 𝑧 = 𝑈h, 

where h is the vector of outputs from the 
previous hidden layer

10/22/19 Natalie Parde - UIC CS 421 105



Formal Definitions
• Letting n2 be the number of output nodes, 𝑧 ∈ ℝ%e

• The weight matrix U thus has the dimensionality 𝑈 ∈ ℝ%e×%b , where n1 is 
the number of hidden units in the previous layer

• Uij is the weight from unit j in the hidden layer to unit i in the output 
layer

10/22/19 Natalie Parde - UIC CS 421 106



However, 
z can’t be 
the 
classifier 
output!

Remember, z is just a vector 
of real-valued numbers

For classification, a vector of 
probabilities is needed 
instead

10/22/19 Natalie Parde - UIC CS 421 107



How do we 
convert our 
real-valued 
numbers to 

probabilities?

• Normalization!
• Goals:

• All numbers should lie between 0 and 1
• All numbers should sum to 1

0.5 1.2 0.2 2.6 0.3 0.3 0.1 0.1 0.2 0.3

10/22/19 Natalie Parde - UIC CS 421 108



Remember, there are many different 
activation functions….

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid

10/22/19 Natalie Parde - UIC CS 421 109



softmax

• Converts a set of real-valued inputs into a 
set of probabilities proportional to the 
exponentials of the input values

• Why exponentials instead of just the raw 
input values?

• Increase the probability of the highest 
value in the vector

• Decrease the probabilities of the other 
values

• Hence, the “soft” max is taken, rather than 
the “hard” max (argmax)

10/22/19 Natalie Parde - UIC CS 421 110



Formal 
Definition: 

softmax

• Letting z be a vector with values 𝑧, ∈ 𝐳,
• softmax 𝑧, = 47j

∑klb
|z| 47k

10/22/19 Natalie Parde - UIC CS 421 111



Example: softmax

1

1

1

1

1

0

∑

∑
1

1

-1

soft
max

1

1

0

1

1

-1

2

1

2

1

ReLU

ReLU

𝑒Gj

∑op"
|z| 𝑒Gk

zi 2 1
softmax(zi)

10/22/19 Natalie Parde - UIC CS 421 112



Example: softmax

1

1

1

1

1

0

∑

∑
1

1

-1

soft
max

1

1

0

1

1

-1

2

1

ReLU

ReLU

𝑒Gj

∑op"
|z| 𝑒Gk

zi 2 1
softmax(zi)

2

1

𝑒q

𝑒q + 𝑒"

𝑒"

𝑒q + 𝑒"

10/22/19 Natalie Parde - UIC CS 421 113



Example: softmax

1

1

1

1

1

0

∑

∑
1

1

-1

soft
max

1

1

0

1

1

-1

2

1

ReLU

ReLU

𝑒Gj

∑op"
|z| 𝑒Gk

zi 2 1
softmax(zi) 0.73 0.27

2

1

𝑒q

𝑒q + 𝑒" = 0.73

𝑒"

𝑒q + 𝑒" = 0.27

10/22/19 Natalie Parde - UIC CS 421 114



Feedforward 
Network

• Final set of equations:
• h = 𝜎 𝑊x + 𝐛
• z = 𝑈h
• 𝑦 = softmax(z)

• This represents a two-layer feedforward 
neural network

• When numbering layers, count the 
hidden and output layers but not the 
input layer

10/22/19 Natalie Parde - UIC CS 421 115



What if we want our network to have 
more than two layers?
• Let W[n] be the weight matrix for layer n, b[n] be the bias vector for layer n, and so 

forth
• Let 𝑔(-) be an activation function

• ReLU
• tanh
• softmax
• Etc.

• Let a[n] be the output from layer n, and z[n] be the combination of weights and 
biases W[n] a[n-1]+ b[n]

• Let the input layer be a[0]

10/22/19 Natalie Parde - UIC CS 421 116



What if we want our network to have 
more than two layers?
• With this representation, a two-layer network becomes:

• 𝑧["] = 𝑊["]𝑎[@] + 𝑏["]

• 𝑎["] = 𝑔 " 𝑧 "

• 𝑧[q] = 𝑊[q]𝑎["] + 𝑏[q]

• 𝑎[q] = 𝑔 q (𝑧 q )
• 𝑦v = 𝑎[q]

• With this notation, we can easily generalize to networks with more 
layers:

• For i in 1..n
• 𝑧[,] = 𝑊[,]𝑎[,?"] + 𝑏[,]

• 𝑎[,] = 𝑔 , (𝑧 , )
• 𝑦v = 𝑎[%]

10/22/19 Natalie Parde - UIC CS 421 117



One final 
note….

• The activation function 𝑔(-) generally differs 
for the final layer

• Earlier layers will more commonly be ReLU
or tanh

• Final layers will more commonly be softmax
(for multinomial classification) or sigmoid 
(for binary classification)

10/22/19 Natalie Parde - UIC CS 421 118



Training Neural Networks

• Feedforward neural networks are a type of supervised 
classification model

• Thus, the model learns to predict the correct output y for an 
observation x using labeled training data

• Feedforward neural networks do this by learning parameters 
W[n] and b[n] for each layer n such that the predicted value y’ for 
a training observation is as close as possible to the actual y 
value for that observation

10/22/19 Natalie Parde - UIC CS 421 119



How do we 
learn these 

parameters?

• We need two elements:
• A loss function that models the 

distance between the predicted and 
actual labels

• An optimization algorithm
• We also need to use a technique called 

backpropagation

10/22/19 Natalie Parde - UIC CS 421 120



Loss 
Functions

• Loss functions let neural networks know 
how well they’re doing at modeling their 
training data

• If they’re predicting values that are pretty 
close to those in the validation set, 
they’re doing well (minimal loss)

• If they’re predicting values that are pretty 
different from those in the validation set, 
they’re not doing very well (high loss)

• Just like with activation functions, many loss 
functions exist!

Predicted Actual
.6 0
.7 0
.2 1

Predicted Actual
.2 0
.1 0
.3 1

10/22/19 Natalie Parde - UIC CS 421 121



Loss Functions

mean squared error
mean absolute error

cross-entropy
KL divergence

hinge loss

10/22/19 Natalie Parde - UIC CS 421 122



Cross-Entropy 
Loss

• Most common loss function for many 
classification tasks

• Measures the distance between the probability 
distributions of predicted and actual values

• 𝑙𝑜𝑠𝑠 𝑦,, 𝑦,′ = −∑{p"
| 𝑝,,{ log 𝑝,,{′

• C is the set of all possible classes
• 𝑝,,{ is the actual probability that 

instance i should be labeled with 
class c

• 𝑝,,{′ is the predicted probability that 
instance i should be labeled with 
class c

• Ranges from 0 (best) to 1 (worst)
• Observations with a big distance between the 

predicted and actual values have much higher 
cross-entropy loss than observations with only 
a small distance between the two values

10/22/19 Natalie Parde - UIC CS 421 123



Example: Cross-Entropy Loss

Oh yay time for another midterm. Sarcastic Not Sarcastic

10/22/19 Natalie Parde - UIC CS 421 124



Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
Oh yay time for 
another midterm. 1 0

Oh yay time for another midterm. Sarcastic Not Sarcastic

10/22/19 Natalie Parde - UIC CS 421 125



Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
Oh yay time for 
another midterm. 0.7 0.3 1 0

Oh yay time for another midterm. Sarcastic Not Sarcastic

10/22/19 Natalie Parde - UIC CS 421 126



Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
Oh yay time for 
another midterm. 0.7 0.3 1 0

Oh yay time for another midterm. Sarcastic Not Sarcastic

𝑙𝑜𝑠𝑠 𝑦,, 𝑦,′ = −�
{p"

|

𝑝,,{ log 𝑝,,{′ = −𝑝,,���{���,{ log 𝑝,,���{���,{′ − 𝑝,,%�� ���{���,{ log 𝑝,,%�� ���{���,{′

10/22/19 Natalie Parde - UIC CS 421 127



Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
Oh yay time for 
another midterm. 0.7 0.3 1 0

Oh yay time for another midterm. Sarcastic Not Sarcastic

𝑙𝑜𝑠𝑠 𝑦,, 𝑦,′ = −�
{p"

|

𝑝,,{ log 𝑝,,{′ = −𝑝,,���{���,{ log 𝑝,,���{���,{′ − 𝑝,,%�� ���{���,{ log 𝑝,,%�� ���{���,{′

𝑙𝑜𝑠𝑠 𝑦,, 𝑦,′ = −1 ∗ log 0.7 − 0 ∗ log 0.3

10/22/19 Natalie Parde - UIC CS 421 128



Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
Oh yay time for 
another midterm. 0.7 0.3 1 0

Oh yay time for another midterm. Sarcastic Not Sarcastic

𝑙𝑜𝑠𝑠 𝑦,, 𝑦,′ = −�
{p"

|

𝑝,,{ log 𝑝,,{′ = −𝑝,,���{���,{ log 𝑝,,���{���,{′ − 𝑝,,%�� ���{���,{ log 𝑝,,%�� ���{���,{′

𝑙𝑜𝑠𝑠 𝑦,, 𝑦,′ = −1 ∗ log 0.7 − 0 ∗ log 0.3 = − log 0.7 = 0.15

10/22/19 Natalie Parde - UIC CS 421 129



Loss functions measure 
how well your model works 

for a single observation.

• What if you want to know how well 
your model works in general (across 
all observations)?

• Cost Function: Average the loss 
over all examples

10/22/19 Natalie Parde - UIC CS 421 130



Example: Cost Function
Instance

Predicted 
Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic
Actual Probability: 

Sarcastic
Actual Probability: 

Not Sarcastic

Oh yay time for 
another midterm. 0.7 0.3 1 0

I love learning about 
neural networks! 0.5 0.5 0 1

I hope the next 
assignment is way 
harder than the other 
assignments.

0.2 0.8 1 0

𝑙𝑜𝑠𝑠 𝑦,, 𝑦,′ = −�
{p"

|

𝑝,,{ log 𝑝,,{′ = −𝑝,,���{���,{ log 𝑝,,���{���,{′ − 𝑝,,%�� ���{���,{ log 𝑝,,%�� ���{���,{′

𝑙𝑜𝑠𝑠 𝑦,, 𝑦,′ = −1 ∗ log 0.7 − 0 ∗ log 0.3 = − log 0.7 = 0.15

10/22/19 Natalie Parde - UIC CS 421 131



Example: Cost Function
Instance

Predicted 
Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic
Actual Probability: 

Sarcastic
Actual Probability: 

Not Sarcastic

Oh yay time for 
another midterm. 0.7 0.3 1 0

I love learning about 
neural networks! 0.5 0.5 0 1

I hope the next 
assignment is way 
harder than the other 
assignments.

0.2 0.8 1 0

𝑙𝑜𝑠𝑠 𝑦,, 𝑦,′ = −�
{p"

|

𝑝,,{ log 𝑝,,{′ = −𝑝,,���{���,{ log 𝑝,,���{���,{′ − 𝑝,,%�� ���{���,{ log 𝑝,,%�� ���{���,{′

𝑙𝑜𝑠𝑠 𝑦,, 𝑦,′ = −1 ∗ log 0.7 − 0 ∗ log 0.3 = − log 0.7 = 0.15
𝑙𝑜𝑠𝑠 𝑦,, 𝑦,′ = −0 ∗ log 0.5 − 1 ∗ log 0.5 = − log 0.5 = 0.30
𝑙𝑜𝑠𝑠 𝑦,, 𝑦,′ = −1 ∗ log 0.2 − 0 ∗ log 0.8 = − log 0.2 = 0.70

10/22/19 Natalie Parde - UIC CS 421 132



Example: Cost Function
Instance

Predicted 
Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic
Actual Probability: 

Sarcastic
Actual Probability: 

Not Sarcastic

Oh yay time for 
another midterm. 0.7 0.3 1 0

I love learning about 
neural networks! 0.5 0.5 0 1

I hope the next 
assignment is way 
harder than the other 
assignments.

0.2 0.8 1 0

𝑙𝑜𝑠𝑠 𝑦,, 𝑦,′ = −�
{p"

|

𝑝,,{ log 𝑝,,{′ = −𝑝,,���{���,{ log 𝑝,,���{���,{′ − 𝑝,,%�� ���{���,{ log 𝑝,,%�� ���{���,{′

𝑙𝑜𝑠𝑠 𝑦,, 𝑦,′ = −1 ∗ log 0.7 − 0 ∗ log 0.3 = − log 0.7 = 0.15
𝑙𝑜𝑠𝑠 𝑦,, 𝑦,′ = −0 ∗ log 0.5 − 1 ∗ log 0.5 = − log 0.5 = 0.30
𝑙𝑜𝑠𝑠 𝑦,, 𝑦,′ = −1 ∗ log 0.2 − 0 ∗ log 0.8 = − log 0.2 = 0.70

0.15 + 0.30 + 0.70
3 = 0.38

10/22/19 Natalie Parde - UIC CS 421 133



How do we 
make sure 
the overall 
cost is as 

small as 
possible?

• In other words, how do we minimize our 
cost function?

• Optimization algorithms!
• As with activation functions and loss 

functions, there are many different 
optimization algorithms

10/22/19 Natalie Parde - UIC CS 421 134



Optimization Algorithms

stochastic gradient descent
RMSprop

adagrad

adam

adamax

10/22/19 Natalie Parde - UIC CS 421 135



Gradient 
Descent

• Views a cost function as a gradient
• Goal: Find the lowest point of that gradient

Cost function

Minimum

10/22/19 Natalie Parde - UIC CS 421 136



How do we find the 
gradient of a 

function?

• Take its derivative!
• Letting 𝑓(-) be our cost function:

• gradient 𝑓(𝑥) = ��(�)
��j

10/22/19 Natalie Parde - UIC CS 421 137



Gradient Descent

• In gradient descent, we move 
along the curve specified by our 
cost function and find the 
gradient at each new point that 
we encounter

• The distance between the 
points we encounter is 
specified by a learning 
rate along with weight and 
bias parameters

• When we reach a point at which 
the gradient does not decrease 
(or even increases) from one 
point to the next, we stop

• This is the point at which 
the optimization algorithm 
converges

Cost function

Minimum

10/22/19 Natalie Parde - UIC CS 421 138



The 
problem 
with 
gradient 
descent….

• In more complex cost 
functions, gradient 
descent algorithms can 
get stuck in local minima

• This is why choosing a 
good learning rate is 
important!

• The learning rate for 
gradient descent is one of 
many hyperparameters
that you can tune when 
building your neural 
network model

10/22/19 Natalie Parde - UIC CS 421 139



Stochastic 
Gradient 
Descent

• Gradient Descent: To update the weight 
and bias parameters for the gradient 
descent algorithm, you run through every 
sample in your dataset

• Stochastic Gradient Descent: To update 
the weight and bias parameters, you run 
through one randomly selected sample from 
your dataset

• Stochastic gradient descent → much 
quicker!

10/22/19 Natalie Parde - UIC CS 421 140



For deep neural networks, 
we need to compute 

gradients with respect to 
weight parameters that 

appear early on in the 
network …even though loss 
is only computed at the end 

of the network once we 
have our predicted values.

10/22/19 Natalie Parde - UIC CS 421 141



Backpropagation

• Allows us to propagate our error backward 
all the way to the beginning of the network

• How?
• Compute partial derivatives using the 

chain rule, starting with the output 
node(s) and ending with the input units

• At each node:
1. Compute the local partial derivative 

with respect to the parent
2. Multiply that by the partial 

derivative being passed down from 
the parent

3. Pass the result along to its 
child(ren)

10/22/19 Natalie Parde - UIC CS 421 142



Backpropagation

Input Output

10/22/19 Natalie Parde - UIC CS 421 143



Backpropagation

Input Output

10/22/19 Natalie Parde - UIC CS 421 144



Backpropagation

Input Output

10/22/19 Natalie Parde - UIC CS 421 145



What are the 
derivatives of 

the sigmoid, 
tanh, and 

ReLU
activation 

functions?

• sigmoid
• ��(G)

�G = 𝜎(𝑧)(1 − 𝜎 𝑧 )

• tanh

• �����(G)
�G = 1 − tanhq(𝑧)

• ReLU

• �����(G)
�G = P0 for 𝑥 < 0

1 for 𝑥 ≥ 0

10/22/19 Natalie Parde - UIC CS 421 146



What are some ways to 
improve the performance 
of a neural network?

• Normalize input values to have a mean of 0
• Randomly drop some units and their 

connections from the network during training 
(dropout)

• Tune hyperparameters
• Learning rate
• Number of layers
• Number of units per layer
• Type of activation function
• Type of optimization function

10/22/19 Natalie Parde - UIC CS 421 147



Tool for 
Building 
Neural 
Networks

• https://www.tensorflow.org/

TensorFlow

• https://keras.io/

Keras

• https://pytorch.org/

PyTorch

• https://deeplearning4j.org/

DL4J

10/22/19 Natalie Parde - UIC CS 421 148

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
https://deeplearning4j.org/


Neural 
Language 

Models

• Extremely popular application of neural 
networks

• Advantages over n-gram language models:
• Don’t need smoothing
• Can handle much longer histories
• Can generalize over contexts of similar 

words
• Disadvantage:

• Much slower to train!
• Neural language models have much higher 

predictive accuracy than n-gram language 
models trained on datasets of similar sizes

10/22/19 Natalie Parde - UIC CS 421 149



Neural 
Language 

Models

• Neural language models are used to boost 
performance for many modern NLP tasks

• Machine translation
• Dialogue systems
• Language generation

10/22/19 Natalie Parde - UIC CS 421 150



Sample Generated by a Neural 
Language Model (GPT-2)
• Link to article: https://openai.com/blog/better-language-models/

System Prompt (Human-Written): In a shocking finding, scientist discovered a herd of unicorns 
living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the 
researchers was the fact that the unicorns spoke perfect English.

10/22/19 Natalie Parde - UIC CS 421 151

https://openai.com/blog/better-language-models/


Sample Generated by a Neural 
Language Model (GPT-2)
Model Completion (Machine-Written, 10 Tries): The scientist named the population, after their distinctive horn, Ovid’s Unicorn. 
These four-horned, silver-white unicorns were previously unknown to science.
Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes 
Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be
a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time we reached the top of one peak, the water looked blue, with 
some crystals on top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from the air without having to move
too much to see them – they were so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that the creatures also spoke some fairly regular English. Pérez 
stated, “We can see, for example, that they have a common ‘language,’ something like a dialect or dialectic.”

Dr. Pérez believes that the unicorns may have originated in Argentina, where the animals were believed to be descendants of a lost 
race of people who lived there before the arrival of humans in those parts of South America.
While their origins are still unclear, some believe that perhaps the creatures were created when a human and a unicorn met each 
other in a time before human civilization. According to Pérez, “In South America, such incidents seem to be quite common.”
However, Pérez also pointed out that it is likely that the only way of knowing for sure if unicorns are indeed the descendants of a 
lost alien race is through DNA. “But they seem to be able to communicate in English quite well, which I believe is a sign of 
evolution, or at least a change in social organization,” said the scientist.

10/22/19 Natalie Parde - UIC CS 421 152



Feedforward 
Neural 

Language 
Model

• Input: Representation of some number of 
previous words

• wt-1, wt-2, etc.
• Output: Probability distribution over possible 

next words
• Goal: Approximate the probability of a word 

given the entire prior context 𝑃(𝑤�|𝑤"�?")
based on the n previous words

• 𝑃(𝑤�|𝑤"�?") ≈ 𝑃(𝑤�|𝑤�?%3"�?" )

10/22/19 Natalie Parde - UIC CS 421 153



Neural language 
models 

represent prior 
context using 

embeddings of 
the previous 

words.

• Allows neural language models to 
generalize to unseen data better than n-
gram models

• Embeddings can come from various 
sources

• E.g., pretrained Word2Vec embedding 
dictionary

10/22/19 Natalie Parde - UIC CS 421 154



Neural Language Model

Natalie wt-4

sat wt-3

down wt-2

to wt-1

write wt

the wt+1

midterm wt+2

𝑃(𝑤� = “write”|𝑤�?" = “to”, 𝑤�?q = “down”, 𝑤�?� = “sat”)

10/22/19 Natalie Parde - UIC CS 421 155



Neural Language Model

Natalie wt-4

sat wt-3

down wt-2

to wt-1

write wt

the wt+1

midterm wt+2

𝑃(𝑤� = “write”|𝑤�?" = “to”, 𝑤�?q = “down”, 𝑤�?� = “sat”)

10/22/19 Natalie Parde - UIC CS 421 156



Neural Language Model

Natalie wt-4

sat wt-3

down wt-2

to wt-1

write wt

the wt+1

midterm wt+2

𝑃(𝑤� = “write”|𝑤�?" = “to”, 𝑤�?q = “down”, 𝑤�?� = “sat”)

h1

10/22/19 Natalie Parde - UIC CS 421 157



Neural Language Model

Natalie wt-4

sat wt-3

down wt-2

to wt-1

write wt

the wt+1

midterm wt+2

𝑃(𝑤� = “write”|𝑤�?" = “to”, 𝑤�?q = “down”, 𝑤�?� = “sat”)

h1

h2

10/22/19 Natalie Parde - UIC CS 421 158



Neural Language Model

Natalie wt-4

sat wt-3

down wt-2

to wt-1

write wt

the wt+1

midterm wt+2

𝑃(𝑤� = “write”|𝑤�?" = “to”, 𝑤�?q = “down”, 𝑤�?� = “sat”)

h1

h2

y1

…

“write”

…

y|V|

10/22/19 Natalie Parde - UIC CS 421 159



Neural Language Model

Natalie wt-4

sat wt-3

down wt-2

to wt-1

write wt

the wt+1

midterm wt+2

𝑃(𝑤� = “write”|𝑤�?" = “to”, 𝑤�?q = “down”, 𝑤�?� = “sat”)

h1

h2

y1

…

“write”

…

y|V|

softmax
distribution over 
all words in the 
vocabulary

10/22/19 Natalie Parde - UIC CS 421 160



What if we 
don’t already 

have dense 
word 

embeddings?

• When we use another algorithm to learn the 
embeddings for our input words, this is 
called pretraining

• However, sometimes it’s preferable to learn 
embeddings while training the network, 
rather than using pretrained embeddings

• E.g., if the desired application places 
strong constraints on what makes a 
good representation

10/22/19 Natalie Parde - UIC CS 421 161



Learning 
New 

Embeddings

• Start with a one-hot vector for each word 
in the vocabulary

• Modified bag-of-words representation
• Element for a given word is set to 1
• All other elements are set to 0

• Randomly initialize the embedding layer
• Maintain a separate vector of weights for 

the embedding layer, for each vocabulary 
word

10/22/19 Natalie Parde - UIC CS 421 162



Neural Language Model

Natalie wt-4

sat wt-3

down wt-2

to wt-1

write wt

the wt+1

midterm wt+2

𝑃(𝑤� = “write”|𝑤�?" = “to”, 𝑤�?q = “down”, 𝑤�?� = “sat”)

h1

h2

y1

…

“write”

…

y|V|

softmax
distribution over 
all words in the 
vocabulary

0

0

1

0

0

1

0

0

0

0

0

0

0

1

0

10/22/19 Natalie Parde - UIC CS 421 163



Formal Definition: Learning New 
Embeddings
• Letting E be an embedding matrix of dimensionality d, with one row for 

each word in the vocabulary:
• e = (𝐸�b, 𝐸�e, … , 𝐸��)
• h = 𝜎 𝑊e + 𝐛
• z = 𝑈h
• 𝑦 = softmax(z)

• Optimizing this network using the same techniques discussed for other 
neural networks will result in both (a) a model that predicts words, and (b) 
a new set of word embeddings that can be used for other tasks

10/22/19 Natalie Parde - UIC CS 421 164



Summary: 
Neural 

Networks 
and Neural 
Language 

Models

• Feedforward neural networks are multilayer networks in 
which all units in a layer are connected to all units in the 
previous and next layers (but no units in the current layer)

• Neural networks have input, hidden, and output units
• Values output by the output layer need to be converted to 

probabilities using specific activation functions
• softmax converts output values into a set of 

probabilities proportional to the exponentials of the 
input values

• Training neural networks requires a loss function and an 
optimization algorithm

• With multilayer networks, losses need to be 
backpropagated all the way to the input layer when 
optimizing the model’s weights

• Neural language models represent context using dense 
embeddings rather than n-grams

• Neural language models can either use pretrained 
embeddings for this purpose, or they can learn their own

10/22/19 Natalie Parde - UIC CS 421 165


