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Wh at dalre  Classification models comprised of

iInterconnected computing units, or
neu ral neurons, (loosely!) mirroring the

networks’) Interconnected neurons in the human brain
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Are neural networks new?

1943: First 1971: Implementation 1982: First
mathematical of feedforward network recurrent neural
NN model’ with 8 layers? network®

1982: First

convolutional
neural network#

'McCulloch, W. S., and W. Pitts. "A logical calculus of the ideas immanent in nervous 3lvakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE transactions on Systems,
activity." The bulletin of mathematical biophysics 5.4 (1943): 115-133. Man, and Cybernetics, (4), 364-378.

2Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton Project

4Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organizing neural network model for a
Para. Cornell Aeronautical Laboratory.

mechanism of visual pattern recognition. In Competition and cooperation in neural nets (pp. 267-
285). Springer, Berlin, Heidelberg.
SHopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.
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Why haven’t they
been a big deal
until recently then?

« Data
« Computing power
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Do Neural Dialog Systems Use the Conversation History Effectively?

Daniel Fried" Nikita Kitaev* Dan Klein iri . .
Computer Science Division An Empirical Study Motoki Sato’, Jun Suzuki®*, Shun Kiyono*?
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Abstract treebanks still transfer to out-of-domain improve-

e 2, - g cl ’
ments (McClosky ct al., 2006). Mila Université de Montréal Ecole Polytechnique de Montréal

“Google Research, Brain Team  “Element AI Montréal

Neural parsers obtain state-of-the-art results Is the success of neural constituency parsers

on benchmark trecbanks for constituency
parsing—but to what degree do they general-
ize to other domains? We present three re-
sults about the generalization of neural parsers
in a zero-shot setting: training on trees from

(Henderson 2004; Vinyals et al. 2015; Dyer et al.
2016; Cross and Huang 2016; Choe and Charniak
2016; Stern et al. 2017; Liu and Zhang 2017; Ki-
taev and Klein 2018, inter alia) similarly transfer-

one corpus and evaluating on out-of-d
corpora. First, neural and non-neural parsers
generalize comparably to new domains. Sec-
ond, incorporating pre-trained encoder repre-
sentations into neural parsers substantially im-
proves their performance across all domains,
but does not give a larger relative improvement
for out-of-domain treebanks. Finally, despite
the rich input representations they learn, neu-
ral parsers still benefit from structured output

able to f-domain treebanks? In this work, we
focus on zero-shot generalization: training parsers
on a single treebank (e.g. WSJ) and evaluating
on a range of broad-coverage, out-of-domain tree-
banks (e.g. Brown (Francis and Kutera, 1979),
Genia (Tateisi et al., 2005), the English Web Tree-
bank (Petrov and McDonald, 2012)). We ask three
questions about zero-shot generalization proper-
ties of state-of-the-art neural constituency parsers:

Neural Relation Extraction for Knowledge Base Enrichment

Bayu Distiawan Trisedya', Gerhard Weikum?, Jianzhong Qi’, Rui Zhang'*
! The University of Melbourne, Australia
2 Max Planck Institute for Informatics, Saarland Informatics Campus, Germany
{btrisedya@student, jianzhong.qi@, rui.zhang@}unimelb.edu.au
weikum@mpi-inf.mpg.de

Abstract

Tnput sentence:
"New York University is a private
university in Manhattan."

We study relation ion for g
base (KB) enrichment. Specifically, we aim
to extract entities and their relationships from
sentences in the form of triples and map the
elements of the extracted triples to an existing
KB in an end-to-end manner. Previous stud-
ies focus on the extraction itself and rely on
Named Entity Disambiguation (NED) to map
triples into the KB space. This way, NED er-
rors may cause extraction errors that affect the
overall precision and recall. To address this

Unsupervised approach output:
{NYU,is,private university)
(NYU,is private university in,Manhattan)
Supervised approach output:
{NYU, instance of, Private University)
{NYU, located in, Manhattan)
Canoni output:
(049210, P31, Q902104)
(049210, P131, Q11299)

Table 1: Relation extraction example.

Augmenting Neural Networks with First-order Logic

Tao Li
University of Utah
tli@cs.utah.edu

Abstract

Today, the dominant paradigm for training
neural networks involves minimizing task loss
on a large dataset. Using world knowledge to
inform a model, and yet retain the ability to
perform end-to-end training remains an open
question. In this paper, we present a novel

for i i ive knowl-

Vivek Srikumar
University of Utah
svivek@cs.utah.edu

Paragraph: Gaius Julius Cacsar (July 100 BC - 15 March 44
BC), Roman general) statesman, Consul and
notable FITITTS of ISSHRpIORE, played a critical
role in the events that led to the demise of the
Roman Republic and the rise of the Roman
Empire through his various military campaigns.

Question: Which Koman gensralis known for TETETT prose?

Figure 1: An example of reading comprehension that

edge to neural network architectures in order
to guide training and prediction. Our frame-
work systematically compiles logical state-

ments l;]looofﬁlﬁ? fr@ls that augment

In this paper, we con-
sider the problem of incorporating external knowledge
about such alignments into training neural networks.

Abstract

Neural generative models have been become
increasingly popular when building conversa-
tional agents. They offer flexibility, can be eas-
ily adapted to new domains, and require min-
imal domain engineering. A common criti-
cism of these systems is that they seldom un-
derstand or use the available dialog history ef-
fectively. In this paper, we take an empiri-
cal approach to understanding how these mod-

they still lack the ability to “understand” and pro-
cess the dialog history to produce coherent and
interesting responses. They often produce bor-
ing and repetitive responses like “Thank you.” (Li
etal., 2015; Serban et al., 2017a) or meander away
from the topic of conversation. This has been often
attributed to the manner and extent to which these
models use the dialog history when generating re-
sponses. However, there has been little empirical
investigation to validate these speculations.

Abstract

A izati hnique based on ad

ial perturbation, which was initially developed
in the field of image processing, has been suc-
cessfully applied to text classification tasks
and has yielded attractive improvements. We
aim to further leverage this promising method-
ology into more sophisticated and critical neu-
ral models in the natural language processing
field, i.e., neural machine translation (NMT)
models. However, it is not trivial to apply this

1
L Encoder Decoder

'__{u
P .
whod, =k

Figure 1: An intuitive sketch that explains how we
add adversarial perturbations to a typical NMT model
structure for adversarial regularization. The definitions
of e; and f; can be found in Eq. 2. Moreover, those of
#; and 7} are in Eq. 8 and 13, respectively.
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Neural networks

are everywhere!




* Neural networks are comprised of small
computing units

Neu ral  Each computing unit takes a vector of
Network input values

- « Each computing unit produces a single
Basics output value

« Many different types of neural networks
exist
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Types of Neural
Networks

» Feedforward Neural Network

» Convolutional Neural Network

* Recurrent Neural Network

« Generative Adversarial Network
» Sequence-to-Sequence Network
» Autoencoder

* Transformer

10/22/19 Natalie Parde - UIC CS 421



Earliest and simplest form of neural network

Data is fed forward from one layer to the next
« Each layer:
FeedfO Ywa rd « One or more units
* A unit in layer n receives input from all units
Neu ral In layer n-1 and sends output to all units in
layer n+1
Netwo rks * Aunit in layer n does not communicate with
any other units in layer n

The outputs of all units except for those in the
last layer are hidden from external viewers

10/22/19 Natalie Parde - UIC CS 421



Feedforward Neural Networks

10/22/19 Natalie Parde - UIC CS 421
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People often tend to refer to
neural network-based machine
learning as deep learning

What is
deep
learning?

Modern networks often have many
layers (in other words, they're deep)

10/22/19



Deep Learning




Deep Learning

10/22/19
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Learning

15



 Traditional classification algorithms usually
assume that data is linearly separable

Neural .
* |[n contrast, neural networks learn nonlinear

hetworks tend functions
to be more
powerful than
traditional
classification
algorithms.

10/22/19 Natalie Parde - UIC CS 421 16



Neural networks
also commonly
use different

types of features
from traditional
classification
algorithms.

| raditional classification

* Manually engineer a set of features and
extract them for each instance

» Part-of-speech label
 Number of exclamation marks
* Sentiment score

 Implicitly learn features as part of the
classifier’s training process

» Just use word embeddings as input

Natalie Parde - UIC CS 421 17




Neural
networks
aren’t

necessarily
the best

classifier for
all tasks!

Learning features implicitly requires a lot of data

In general, deeper network — more data needed

Thus, neural nets tend to work very well for large-
scale problems, but not that well for small-scale
problems

Natalie Parde - UIC CS 421 18



« At their core, neural networks are
comprised of computational units

. . « Computational units:
Buildi ng 1. Take a set of real-valued numbers as
iInput
BIOCkS fOr 2. Perform some computation on them
Neu ral 3. Produce a single output
Networks 03

1.7
0.9

>
5.6 1
0.3

4.2
1.4
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Computational

Units

« The computation performed by each
unit is a weighted sum of inputs

» Assign a weight to each input
 Add one additional bias term

« More formally, given a set of inputs
X1, .-, Xn, @ UNit has a set of
corresponding weights wy, ..., w,, and
a bias b, so the weighted sum z can
be represented as:

¢ Z=b+ Ziwixl-

Natalie Parde - UIC CS 421 20



» Recall that our classification input is
some sort of word embedding or
other feature vector

Computational * Thus, letting w be the weight vector
Units and x be the input vector (a word
embedding or feature vector), we
can also represent the weighted sum
z using vector notation:

cez=w-X+0b>b

Natalie Parde - UIC CS 421 21



* The equation thus far still computes
a linear function of x!

 Recall that neural networks learn
nonlinear functions

Computational - These nonlinear functions are
Units commonly referred to as activations

* The output of a computation unit is
thus the activation value for the
unit, y

©y=f()=fw-x+b)

Natalie Parde - UIC CS 421 22



There are many different activation
functions!

softplus

hyperbolic tangent (tanh)

10/22/19 Natalie Parde - UIC CS 421 23



There are many different activation
functions!

softplus

hyperbolic tangent (tanh)
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» Recall the sigmoid function from Word2Vec:

1
[ ] ] ®* OolX) =
Sigmoid T
. . * The sigmoid activation simply sets x to the
Activation linear combination of weights and bias z
1 1
ry=o0(2)= 1te—7  14e-wx+b
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Advantages of Sigmoid Activation

6

8

QP YA] The sigmoid function takes a real value and maps it to the range [0,1]. It is
nearly linear around O but outlier values get squashed toward O or 1.

10/22/19 Natalie Parde - UIC CS 421

« Maps the unit’s output to
a [0,1] range
« Squashes outliers

« Differentiable (useful for
learning)

* You need to be able
to differentiate
functions to optimize
(minimize/maximize)
them

26



Computational Unit with Sigmoid
Activation




Computational Unit with Sigmoid
Activation

Note that a + y by default! Recall that y is the
final output of the entire network, whereas a is
the activation of the individual node.

10/22/19 Natalie Parde - UIC CS 421 28



Example: Computational Unit with
Sigmoid Activation

o-o

Input: “pumpkin spice latte”

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.9]

Bias: 1.0 .
////// Q Natalie Parde - UIC CS 421




Example: Computational Unit with
Sigmoid Activation

o-O
0-11

>e 0

Compute vector (e.g., averaged

Input: “pumpkin spice latte”

Word2Vec embeddlngs for

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

pumpkm “spice,” and “latte”)

—— [0.5, 0.6]

Natalie Parde - UIC CS 421
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Example: Computational Unit with

Sigmoid Activation

Compute vector (e.g., averaged
Input: “pumpkin spice latte” | Word2Vec embeddings for

—— [0.5, 0.6]

“‘pumpkin,” “spice,” and “latte”)
Weights (Input): [0.2, 0.3] '
| Weight (Bias): [0.9]

Bias: 1.0 .
N/22/19 Natalie Parde - UIC CS 421
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Example: Computational Unit with

Sigmoid Activation

0.1+0.18+0.5=0.78

@)1

Compute vector (e.g., averaged
Input: “pumpkin spice latte” | Word2Vec embeddings for

—— [0.5, 0.6]

“‘pumpkin,” “spice,” and “latte”)
Weights (Input): [0.2, 0.3] '
| Weight (Bias): [0.9]

Bias: 1.0 .
N/22/19 Natalie Parde - UIC CS 421
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Example: Computational Unit with

Sigmoid Activation

0.1+0.18+0.5=0.78

z=0.780 a ﬂf

Compute vector (e.g., averaged
Input: “pumpkin spice latte” | Word2Vec embeddings for

—— [0.5, 0.6]

“‘pumpkin,” “spice,” and “latte”)
Weights (Input): [0.2, 0.3] '
| Weight (Bias): [0.9]

Bias: 1.0 .
N/22/19 Natalie Parde - UIC CS 421
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Example: Computational Unit with

Sigmoid Activation

Compute vector (e.g., averaged
Input: “pumpkin spice latte” | Word2Vec embeddings for

—— [0.5, 0.6]

“‘pumpkin,” “spice,” and “latte”)
Weights (Input): [0.2, 0.3] '
| Weight (Bias): [0.9]

Bias: 1.0 .
N/22/19 Natalie Parde - UIC CS 421
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Example: Computational Unit with

Sigmoid Activation

—

Compute vector (e.g., averaged
Input: “pumpkin spice latte” | Word2Vec embeddings for

—— [0.5, 0.6]

“‘pumpkin,” “spice,” and “latte”)
Weights (Input): [0.2, 0.3] '
| Weight (Bias): [0.9]

Bias: 1.0 .
N/22/19 Natalie Parde - UIC CS 421
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Example: Computational Unit with

Sigmoid Activation

0.686

—

7 = 0.780 = 0.686 ‘ y 0,686

Compute vector (e.g., averaged
Input: “pumpkin spice latte” | Word2Vec embeddings for

—— [0.5, 0.6]

“‘pumpkin,” “spice,” and “latte”)
Weights (Input): [0.2, 0.3] '
| Weight (Bias): [0.9]

Bias: 1.0 .
N/22/19 Natalie Parde - UIC CS 421
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Remember, there are many different
activation functions!

softplus

hyperbolic tangent (tanh)

10/22/19 Natalie Parde - UIC CS 421 37



Particularly Common Activation
Functions

softplus

10/22/19 Natalie Parde - UIC CS 421 38



Activation:
tanh

10/22/19

 Variant of sigmoid that ranges from -1 to +1

. __ er—e”?
y eZ+e— 2

* Once again differentiable

 Larger derivatives — generally faster
convergence

Natalie Parde - UIC CS 421

39



Example: Computational Unit with
tanh Activation

0.1+0.18+0.5=0.78

z=0.78@ a ﬂf

Compute vector (e.g., averaged
Input: “pumpkin spice latte” | Word2Vec embeddings for —>[[p_5 0.6]

“‘pumpkin,” “spice,” and “latte”)

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.9]

Bias: 1.0 .
N/22/19 Natalie Parde - UIC CS 421




Example: Computational Unit with

tanh Activation

z=0.78

Compute vector (e.g., averaged
Input: “pumpkin spice latte” | Word2Vec embeddings for

—— [0.5, 0.6]

“‘pumpkin,” “spice,” and “latte”)
Weights (Input): [0.2, 0.3] '
| Weight (Bias): [0.9]

Bias: 1.0 .
N/22/19 Natalie Parde - UIC CS 421
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Example: Computational Unit with
tanh Activation

Compute vector (e.g., averaged
Input: “pumpkin spice latte” | Word2Vec embeddings for —>[[p_5 0.6]

“‘pumpkin,” “spice,” and “latte”)

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.9]

Bias: 1.0 .
N/22/19 Natalie Parde - UIC CS 421




Example: Computational Unit with
tanh Activation

60'78 _ e—0.78

e0.78 + e—0.78

,@g = 0.653&-‘

= 0.653

—

z=0.78

Compute vector (e.g., averaged
Input: “pumpkin spice latte” | Word2Vec embeddings for —>[[p_5 0.6]

“‘pumpkin,” “spice,” and “latte”)

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.9]

Bias: 1.0 .
N/22/19 Natalie Parde - UIC CS 421




Example: Computational Unit with

tanh Activation

0.653
z=0.78

»@3 = 0'654'3 y 0,653

Compute vector (e.g., averaged
Input: “pumpkin spice latte” | Word2Vec embeddings for

—— [0.5, 0.6]

“‘pumpkin,” “spice,” and “latte”)
Weights (Input): [0.2, 0.3] '
| Weight (Bias): [0.9]

Bias: 1.0 .
N/22/19 Natalie Parde - UIC CS 421
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« Ranges from 0 to o«

- - " « Simplest activation function:
Activation: (o, 0

ReLU  Very close to a linear function!
« Quick and easy to compute

10/22/19 Natalie Parde - UIC CS 421
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Example: Computational Unit with
RelLU Activation

0.1+0.18+0.5=0.78

z=0.78@ a ﬂf

Compute vector (e.g., averaged
Input: “pumpkin spice latte” | Word2Vec embeddings for —>[[p_5 0.6]

“‘pumpkin,” “spice,” and “latte”)

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.9]

Bias: 1.0 .
N/22/19 Natalie Parde - UIC CS 421




Example: Computational Unit with
RelLU Activation

0.1+0.18 +0.5=0.78 max(z, 0)

z=0.78@ a ﬂf

Compute vector (e.g., averaged
Input: “pumpkin spice latte” | Word2Vec embeddings for —>[[p_5 0.6]

“‘pumpkin,” “spice,” and “latte”)

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.9]

Bias: 1.0 .
N/22/19 Natalie Parde - UIC CS 421




Example: Computational Unit with

RelLU Activation

z=0.78

max(z,0) = 0.78

Compute vector (e.g., averaged
Input: “pumpkin spice latte” | Word2Vec embeddings for

]

—— [0.5, 0.6]

“‘pumpkin,” “spice,” and “latte”)
Weights (Input): [0.2, 0.3] '
| Weight (Bias): [0.9]

Bias: 1.0 .
N/22/19 Natalie Parde - UIC CS 421
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Example: Computational Unit with

RelLU Activation

z=0.78

max(z,0) = 0.78

—

Compute vector (e.g., averaged
Input: “pumpkin spice latte” | Word2Vec embeddings for

a= 0.75’&

—— [0.5, 0.6]

“‘pumpkin,” “spice,” and “latte”)
Weights (Input): [0.2, 0.3] '
| Weight (Bias): [0.9]

Bias: 1.0 .
N/22/19 Natalie Parde - UIC CS 421
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Example: Computational Unit with
RelLU Activation

—

0.78
z=0.78 @a = 0.78 ( y| o7

Compute vector (e.g., averaged
Input: “pumpkin spice latte” | Word2Vec embeddings for —>[[p_5 0.6]

“‘pumpkin,” “spice,” and “latte”)

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.9]

Bias: 1.0 .
N/22/19 Natalie Parde - UIC CS 421




1.0 1.0 10
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z
. : : : : : a b
PN YAY The sigmoid function takes a real value and maps it to the range [0,1]. It is @ ®)

nearly linear around 0 but outlier values get squashed toward 0 or 1. WIUCER]  The tanh and ReL.U activation functions.

Comparing sigmoid, tanh, and RelLU
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Neural networks are powerful primarily
because they are able to combine multiple
computational units into larger networks

Combining

Computational
Units

Many problems cannot be solved using a
single computational unit

Natalie Parde - UIC CS 421 52



The XOR

Problem

Early example of why
networks of computational
units were necessary to solve
some problems

10/22/19

T D OoR | xoR

0 1 0
1 0O O
1 1 1

Natalie Parde - UIC CS 421
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What is a perceptron?

« A function that outputs a binary value based on whether or not the
product of its inputs and associated weights surpasses a threshold

 Learns this threshold iteratively by trying to find the boundary that is
best able to distinguish between data of different categories

_10,ifw-x+b <0
_{1,ifW°x+b>O o

10/22/19 Natalie Parde - UIC CS 421 54



It’s easy to \,
compute = s
AND and OR

using
perceptrons.
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JAND

It’s easy to
compute = s
AND and OR

using
perceptrons.
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It’s easy to
compute = s
AND and OR

using
perceptrons.
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« Why?
* Perceptrons are linear classifiers

Howeve I, it’s » Linear classifiers learn a decision

boundary that divides a dataset into two

iImpossible parts

* All data on one side of the decision
to com PUte boundary is assigned a label of O
i * All data on the other side of the decision
XOR USIng el boundary is assigned a label of 1

in | * However, it is impossible to draw a single
S g € line that separates the positive and negative

perce ptron . cases of XOR

« XOR is not a linearly separable
function

10/22/19 Natalie Parde - UIC CS 421 58



XOR Cases

0 0O 0 O 0O 0 O 0

X2

0
0 1 0 O 1 1 O 1 1
1 0O 0 1 o 1 1 0 1
1 1 1 1 1 1 1 1 0

10/22/19 Natalie Parde - UIC CS 421
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The only way to compute XOR is by
combining perceptrons!

10/22/19 Natalie Parde - UIC CS 421 60



However, since XOR is not a linearly separable
function, we’ll have to use a nonlinear activation.

10/22/19 Natalie Parde - UIC CS 421



The resulting neural network, with the
weights below, can successfully solve XOR.
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The hidden layer in the previous examples provides
new representations for the input.

10/22/19 Natalie Parde - UIC CS 421 82




The hidden layer in the previous examples provides
new representations for the input.
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The new representations are linearly
separable!

0 0 0
1 0 1 h
2 1 0

ho
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* In our XOR example, we manually assigned
weights to each unit

= * In real-world examples, these weights are
Comblnlng learned automatically using a

Com putationa| backpropagation algorithm

Units * Thus, the network is able to learn a useful
representation of the input training data on
Its own

« Key advantage of neural networks

10/22/19 Natalie Parde - UIC CS 421 85



Summary:
Neural
Networks
(Basics)

10/22/19

Neural networks are classification models comprised of
interconnected computational units (neurons)

They play an increasingly fundamental role in solving many NLP
tasks
There are many varieties of neural networks

* Feedforward

« Convolutional

* Recurrent

« Etc....

Neural networks with multiple layers are deep neural networks

Neural networks can learn to separate data that is not linearly
separable using nonlinear functions
These activation functions can come in many forms
* sigmoid
« tanh
* RelLU
Perceptrons are basic linear functions that output binary values

depending on whether the product of a set of inputs and weights
exceeds a threshold
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What are
feedforward
hetworks?

10/22/19

* Multilayer neural network in which the units
are connected with no cycles

* Outputs from layer n-1 are passed to
units in layer n

« Outputs from layer n are never passed
to layer n-1
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Feedforward Networks

10/22/19
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Historically, sometimes called

multilayer perceptrons (MLPSs)

 Technically, no longer an accurate title
...modern feedforward networks use
units with nonlinear activations, not

FeedfO rwa rd linear perceptrons!

Networks

* Input units
* Hidden units
« QOutput units
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* Vector of scalar values
« Word embedding
e Other feature vector

« No computations performed

in input units

10/22/19 Natalie Parde - UIC CS 421
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« Computation units

* As described previously,
take a weighted sum of

- - inputs and apply a
H Id de n U n Its nonlinear function to it
 Contained in one or more
layers

 Layers are fully connected

 All units in layer n receive
inputs from all units in
layer n-1
« Layer n-1 can be the
input layer or an
earlier hidden layer
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Hidden
Layers

« Remember: Individual computation units
have parameters w (the weight vector) and
b (the bias)

* The parameters for an entire hidden layer
(including all computation units within that
layer) can then be represented as:

* W. Weight matrix containing the weight
vector w; for each unit
 b: Bias vector containing the bias value
b; for each unit /i
 Single bias for layer, but each unit can
associate a different weight with the bias

* W represents the weight of the connection
from input unit x; to hidden unit h;



Why represent W as a single matrix?

* More efficient computation across the entire layer

* Use matrix operations!
* Multiply the weight matrix by input vector x
» Add the bias vector b

* Apply the activation function g (e.g., sigmoid, tanh, or ReLU)

* This means that we can compute a vector h representing the
output of a hidden layer as follows:

+h= g(Wx+Db)
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Example: Computing h across an
entire hidden layer
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Example: Computing h across an
entire hidden layer
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Example: Computing h across an
entire hidden layer

» 1
1
8
0
' ; T l\
1
“\:_
8 1
1
» 1
-1
LA | .

et NG Wy = 1 1]

——————————

___————_~

(4

L4
L
L]
L]
....

E
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N W2=|11]
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Example: Computing h across an
entire hidden layer

10/22/19 Natalie Parde - UIC CS 421 97




Example: Computing h across an
entire hidden layer

10/22/19

-----------------
ann?®
.

0..
...
Ty,
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Example: Computing h across an
entire hidden layer

10/22/19

-----------------
ann?®
.

0..
...
Ty,
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Example: Computing h across an
entire hidden layer

10/22/19

-----------------
ann?®
.

0..
...
Ty,

........

=mw(

= ReLU(

{wz = [11] 't = ReLU (

Natalie Parde
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h = ReLU(WX ¥ b)

MR
-1*1+1*1]+l—1])

51+ [24]) = reww ([3]) |

- UIC CS 421

100



Example: Computing h across an

entire hidden layer

0..
...
Ty,

........

h = ReLU(WX ¥ b)

:mw(
= ReLU(

10/22/19

".W2= 11]
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Formal Definitions

« An input (layer 0) vector x has a dimensionality of ny, where n; is the
number of inputs

e S0, x € R0
* The subsequent hidden layer (layer 1) has dimensionality n,, where n, is
the number of hidden units in the layer

* So, h € R™ and b € R™ (remember, b contains the different weighted
bias values associated with each hidden unit)

 The weight matrix thus has the dimensionality W € R"1%"



Hidden layers form
new representations
for input vectors.

« Goal of the output layer:

« Take the new
representation, h, and
compute a final
output

« What does the final output
look like?
 Real-valued number

* Discrete label

10/22/19
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* Provide probabilities
indicating whether the input
belongs to a given class

« Number of output units can
vary:

 Binary classification
[] might have a single

output unit
 Multinomial classification

(e.g., part-of-speech
tagging) might have an
output unit for each class
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* Provides a probability distribution across
the output nodes

O t t e How?
u pu  Output layer also has a weight matrix, U
Layer  Bias vector is optional

 Following intuition/examples, z = Uh,
where h is the vector of outputs from the
previous hidden layer




Formal Definitions

 Letting n, be the number of output nodes, z € R"2
* The weight matrix U thus has the dimensionality U € R"2*"1 where n, is
the number of hidden units in the previous layer

* U; is the weight from unit j in the hidden layer to unit / in the output
layer



Remember, z is just a vector
of real-valued numbers

However,
Z can’t be
the
classifier
output!

For classification, a vector of
probabilities is needed
instead
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* Normalization!

» Goals:
How do we « All numbers should lie between 0 and 1
convert our * All numbers should sum to 1
real-valued
numbersto | pERMME < CEEECE
probabilities?

X v/
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Remember, there are many different
activation functions....

softplus

hyperbolic tangent (tanh)
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« Converts a set of real-valued inputs into a
set of probabilities proportional to the
exponentials of the input values

« Why exponentials instead of just the raw
input values?

SOftmax * Increase the probability of the highest
value in the vector

» Decrease the probabilities of the other
values

« Hence, the “soft” max is taken, rather than
the “hard” max (argmax)



10/22/19

Formal
Definition:
softmax

* Letting z be a vector with values z; € z,
e’i
 softmax(z;) = Sz 2
Zj=1 e ]

Natalie Parde - UIC CS 421
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Example: softmax

softmax(z;)

PN

8
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Example: softmax

2 1

softmax(z;)

8
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Example: softmax

e’ = 0.73
e2 +el

el B
e2 +el 0.27

Bl

softmax(z;) NN 0.27
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 Final set of equations:
*h=oc(Wx+Db)
« z=Uh
Feedforward  y = softmax(z)

* This represents a two-layer feedforward

Netwo rk neural network

* When numbering layers, count the
hidden and output layers but not the
iInput layer
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What if we want our network to have
more than two layers?

« Let WI" be the weight matrix for layer n, bl™ be the bias vector for layer n, and so
forth

* Let g(-) be an activation function
 RelLU
 tanh
 softmax
 Eftc.

« Let al"l be the output from layer n, and zl"l be the combination of weights and
biases WM alm-11+ plnl

* Let the input layer be al’
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What if we want our network to have
more than two layers?

 With this representation, a two-layer network becomes:

e 7111 = yitlglol 4 pli]
- alll = gltl(z[1])
7121 = wl2lglil 4 pl2]
. ql2l = gl2lz12]y
y' = ql2
. }/Vith this notation, we can easily generalize to networks with more
ayers:

e Foriin1..n
e il — wlidgli-11 4 pli
o alil = glilzliy

[ ] y, -_ a[n]
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* The activation function g(-) generally differs
for the final layer

One f| nal  Earlier layers will more commonly be RelLU
or tanh

nOte "ans  Final layers will more commonly be softmax
(for multinomial classification) or sigmoid
(for binary classification)




Training Neural Networks

» Feedforward neural networks are a type of supervised
classification model

* Thus, the model learns to predict the correct output y for an
observation x using labeled training data

» Feedforward neural networks do this by learning parameters
Win and blnl for each layer n such that the predicted value y’ for
a training observation is as close as possible to the actual y
value for that observation
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 \We need two elements:

* Aloss function that models the
HOW dO we distance between the predicted and
|earn these actual labels

* An optimization algorithm

paramete rS? * We also need to use a technique called

backpropagation
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 Loss functions let neural networks know
how well they're doing at modeling their
training data

* |f they’re predicting values that are pretty
close to those in the validation set,
they’re doing well (minimal loss)

* |f they’re predicting values that are pretty
Loss different from those in the validation set,
they’re not doing very well (high loss)

Fu nCtlonS « Just like with activation functions, many loss
functions exist!

Predicted | _Actual [l Predicted | Actual _
.6 0 2 0

4 0 N 0

@ 2 1 3 1 @
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Loss Functions

hinge loss
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* Most common loss function for many
classification tasks

« Measures the distance between the probability

distributions of predicted and actual values

e loss(y;,yi') = — ZlcC=|1 Dic log pi,c,

» C is the set of all possible classes

* p; . Is the actual probability that
instance i/ should be labeled with
class ¢

Loss * pi. is the predicted probability that
instance / should be labeled with
class ¢

Cross-Entropy

« Ranges from 0 (best) to 1 (worst)

« Observations with a big distance between the
predicted and actual values have much higher
cross-entropy loss than observations with only
a small distance between the two values
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Example: Cross-Entropy Loss

Oh yay time for another midterm.

Not Sarcastic




Example: Cross-Entropy Loss

Oh yay time for another midterm. @ Not Sarcastic
Predicted Predicted Actual Actual
Probability: Probability: Not Probability: Probability: Not
Sarcastic Sarcastic Sarcastic Sarcastic

Oh yay time for

another midterm. 1 0
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Example: Cross-Entropy Loss

Oh yay time for another midterm. Not Sarcastic

Predicted Predicted Actual Actual

Probability: Probability: Not Probability: Probability: Not
Sarcastic Sarcastic Sarcastic Sarcastic

Oh yay time for

another midterm. 0.7 0.3 1 0
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Example: Cross-Entropy Loss

Oh yay time for another midterm. Not Sarcastic

Predicted Predicted Actual Actual
Probability: Probability: Not Probability: Probability: Not
Sarcastic Sarcastic Sarcastic Sarcastic
Oh yay time for
another midterm. 0.7 0.3 1 0
IC|
loss (yir :Vi’) - — Pic log pi,c’ = —Di sarcastic log pi,sarcastic, — Dinot sarcastic log Pinot sarcastic,
c=1
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Example: Cross-Entropy Loss

Oh yay time for another midterm. Not Sarcastic

Predicted Predicted Actual Actual

Probability: Probability: Not Probability: Probability: Not
Sarcastic Sarcastic Sarcastic Sarcastic

Oh yay time for

another midterm. 0.7 0.3 1 0

IC]

—_— !
loss (YU Vi ) z Pic 1Og pi, c = —Di sarcastic log Pisarcastic — Pinot sarcastic log Pinot sarcastic

!

c=

loss(y;,y;") = —1 % logO 7 —0x*log0.3
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Example: Cross-Entropy Loss

Oh yay time for another midterm. Not Sarcastic

Predicted Predicted Actual Actual

Probability: Probability: Not Probability: Probability: Not
Sarcastic Sarcastic Sarcastic Sarcastic

Oh yay time for

another midterm. 0.7 0.3 1 0

IC]

—_— !
loss (YU Vi ) z Pic 1Og pi, c = —Di sarcastic log Pisarcastic — Pinot sarcastic log Pinot sarcastic

!

c=

loss(y;,y;) = —1 *log07 0 *log0.3 = —1log0.7 = 0.15

10/22/19 Natalie Parde - UIC CS 421 129



Loss functions measure

how well your model works
for a single observation.

* What if you want to know how well
your model works in general (across
all observations)?

« Cost Function: Average the loss
over all examples
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Example: Cost Function

Predicted Predicted ey ey
Probability: Probability: Not Actual Proba_blllty. Actual Probab!hty.
. . Sarcastic Not Sarcastic

Sarcastic Sarcastic

Oh yay tlme for 0.7 03 1 0

another midterm.

| love learning about 05 05 0 1

neural networks!

| hope the next

assignment is way 0.2 08 1 0

harder than the other
assignments.

IC]

—_— !
loss (YU Vi ) z Pic 1Og pi, c = —Di sarcastic log Pisarcastic — Pinot sarcastic log Pinot sarcastic
c=

loss(y;,y;) = —1 *log07 0 *log0.3 = —1log0.7 = 0.15

!
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Example: Cost Function

Predicted Predicted
Probability: Probability: Not
Sarcastic Sarcastic

Actual Probability: | Actual Probability:

Sarcastic Not Sarcastic

Oh yay time for

another midterm. Ll 0.3 1 0
| love learning about

neural networks! S 0.5 0 1
| hope the next

assignment is way 0.2 08 1 0

harder than the other
assignments.

IC]

—_— !
loss (YU Vi ) Z Pic log pi, c = —Di sarcastic log Pisarcastic — Pinot sarcastic 1Og Pinot sarcastic
c=

loss(y;,y;") = —1 % logO 7 —0%log0.3 =—1og0.7 = 0.15
loss(y;,v;') = —0x10og0.5 — 1 %1log0.5 = —1log 0.5 = 0.30
loss(y;,y;') = —1x10g0.2 — 0 *1og 0.8 = —log 0.2 = 0.70
10/22/19 Natalie Parde - UIC CS 421 132
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Example: Cost Function

Predicted Predicted
Probability: Probability: Not
Sarcastic Sarcastic

Actual Probability: | Actual Probability:

Sarcastic Not Sarcastic

Oh yay time for

another midterm. Ll 0.3 1 0
| love learning about

neural networks! S 0.5 0 1
| hope the next

assignment is way 0.2 08 1 0

harder than the other
assignments.

IC]

—_— !
loss (YU Vi ) Z Pic log pi, c = —Di sarcastic log Pisarcastic — Pinot sarcastic 1Og Pinot sarcastic

c=

!

loss(yl,yl)——l*log07 0 *log0.3 = —1log0.7 = 0.15 =3
loss(y;,v;') = —0x10og0.5 — 1 %1log0.5 = —1log 0.5 = 0.30 015+ '5U+U'/U:()_38
loss(y;,y;') = —1x10g0.2 — 0 *1og 0.8 = —log 0.2 = 0.70 3
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How do we
make Sure * |In other words, how do we minimize our

cost function?

the Overa" * Optimization algorithms!

Cost iS as * As with activation functions and loss
functions, there are many different

small as optimization algorithms
possible?
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Optimization Algorithms

adam




10/22/19

Gradient
Descent

* Views a cost function as a gradient

« Goal: Find the lowest point of that gradient

Natalie Parde - UIC CS 421

Cost function

Minimum
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How do we find the » Take its derivative!

gradient of a * Letting f(+) be our cost function:
: : 9
function? - gradient(f (x)) = =< i’“
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Gradient Descent

* In gradient descent, we move
along the curve specified by our
cost function and find the
gradient at each new point that
we encounter

* The distance between the
points we encounter is
specified by a

along with weight and
bias parameters

Cost function

When we reach a point at which
the gradient does not decrease
(or even increases) from one
point to the next, we stop

» This is the point at which
the optimization algorithm
converges

Minimum

10/22/19



The * In more complex cost
functions, gradient

descent algorithms can
prObIem get stuck in local minima
With * This is why choosing a
_ good learning rate is

g radient important!

* The learning rate for g
desce nt- "un gradient descent is one of
many hyperparameters
that you can tune when

building your neural
network model
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Stochastic

10/22/19

Gradient
Descent

« Gradient Descent: To update the weight
and bias parameters for the gradient
descent algorithm, you run through every
sample in your dataset

« Stochastic Gradient Descent: To update
the weight and bias parameters, you run
through one randomly selected sample from
your dataset

« Stochastic gradient descent — much
quicker!
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For deep neural networks,
we need to compute
gradients with respect to
weight parameters that
appear early on in the
network ...even though loss
is only computed at the end
of the network once we
have our predicted values.

10/22/19 Natalie Parde - UIC CS 421
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Backpropagation

 Allows us to propagate our error backward
all the way to the beginning of the network

e How?

« Compute partial derivatives using the
chain rule, starting with the output
node(s) and ending with the input units

At each node:

1. Compute the local partial derivative
with respect to the parent

2. Multiply that by the partial
derivative being passed down from
the parent

3. Pass the result along to its
child(ren)



Backpropagation

Output
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Backpropagation

Output

/

- mm = N e e mm e
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Backpropagation
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« sigmoid
60(2)

= 0(2)(1—-a(2))
-tanh

. ata(l;il(z) = 1 — tanh?(2)
 ReLU

, 9RelUz) _ J0forx <O
oz  |1forx =0

10/22/19
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What are the
derivatives of
the sigmoid,
tanh, and
RelU
activation
functions?
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What are some ways to
improve the performance
of a neural network?

 Normalize input values to have a mean of O

« Randomly drop some units and their
connections from the network during training

(dropout)
 Tune hyperparameters
Learning rate
Number of layers
Number of units per layer
Type of activation function
Type of optimization function
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Tool for
Building

Neural
Networks

10/22/19

== lensorFlow

* https.//www.tensorflow.orq/

== Keras

* https://keras.io/

mm PYylorch

* https.//pytorch.orq/

* https.//deeplearning4j.orq/

Natalie Parde - UIC CS 421
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https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
https://deeplearning4j.org/

« Extremely popular application of neural
networks

« Advantages over n-gram language models:
* Don’t need smoothing

Neural » Can handle much longer histories
« Can generalize over contexts of similar
Language words

Models - Disadvantage:

 Much slower to train!

* Neural language models have much higher
predictive accuracy than n-gram language
models trained on datasets of similar sizes



N ral * Neural language models are used to boost
cu performance for many modern NLP tasks

Language . M.achine translation
 Dialogue systems
MOdels « Language generation
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Sample Generated by a Neural
Language Model (GPT-2)

* Link to article: https://openai.com/blog/better-language-models/

System Prompt (Human-Written): In a shocking finding, scientist discovered a herd of unicorns
living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the

researchers was the fact that the unicorns spoke perfect English.
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https://openai.com/blog/better-language-models/

Sample Generated by a Neural
Language Model (GPT-2)

Model Completion (Machine-Written, 10 Tries): The scientist named the population, after their distinctive horn, Ovid’s Unicorn.
These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes
Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be
a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time we reached the top of one peak, the water looked blue, with
some crystals on top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from the air without having to move
too much to see them — they were so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that the creatures also spoke some fairly regular English. Pérez
stated, “We can see, for example, that they have a common ‘language,” something like a dialect or dialectic.”

Dr. Pérez believes that the unicorns may have originated in Argentina, where the animals were believed to be descendants of a lost
race of people who lived there before the arrival of humans in those parts of South America.

While their origins are still unclear, some believe that perhaps the creatures were created when a human and a unicorn met each
other in a time before human civilization. According to Pérez, “In South America, such incidents seem to be quite common.”

However, Pérez also pointed out that it is likely that the only way of knowing for sure if unicorns are indeed the descendants of a
lost alien race is through DNA. “But they seem to be able to communicate in English quite well, which | believe is a sign of
evolution, or at least a change in social organization,” said the scientist.
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* |Input: Representation of some number of

previous words
Feedforward * Wi g, Wi, elC.
Neural » Output: Probability distribution over possible
next words
Lang Uage « Goal: Approximate the probability of a word
Model given the entire prior context P(w,|wi™1)
based on the n previous words

* P(we|wi™) = P(We|Wiineq)
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Neural language

 Allows neural language models to

modc:)ls generalize to unseen data better than n-

represent prior gram models
context using - Embeddings can come from various
embeddings of SO“ECGS o WordoV o
: * E.g., pretrained Word2Vec embedding
the previous dictionary
words.
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Neural Language Model

Natalie Wi
sat Wi.3

down Wi.o

to Wi 1
write Wi
the Wi+ 1

midterm  wi.»

P(wy = “write”|we_; = “to”,w,_, = “down”, w;_3 = “sat”)




Neural Language Model

Natalie Wi /

sat Wi.3

down Wip =~
to Wi 1

write Wi

the Wi 1

midterm  wi.»

P(wy = “write”|we_; = “to”,w,_, = “down”, w;_3 = “sat”)




Neural Language Model

Natalie
sat
down

to

write
the
midterm

P(wy = “write”|we_; = “to”,w,_, = “down”, w;_3 = “sat”)
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Neural Language Model

Natalie w4
sat Wi3

down Wi.o

to Wi.1
write Wi

midterm  Wg.o

P(wy = “write”|we_; = “to”,w,_, = “down”, w;_3 = “sat”)
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Neural Language Model

Natalie w4 /
/

sat Wi3

down Wi
to Wi.1

write Wi

the Wit 1

midterm  Wg.o

P(wy = “write”|we_; = “to”,w,_, = “down”, w;_3 = “sat”)
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Neural Language Model

Natalie w4 /

sat Wi3

down Wiy = softmax

to Wi 1 L«_ dlstrlbutlo_n over
: 1 all words in the

write W, | vocabulary

the Wi41 =

midterm wi.,

P(wy = “write”|we_; = “to”,w,_, = “down”, w;_3 = “sat”)
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What if we
don’t already
have dense
word
embeddings?

10/22/19

 When we use another algorithm to learn the
embeddings for our input words, this is
called pretraining

 However, sometimes it's preferable to learn
embeddings while training the network,
rather than using pretrained embeddings

* E.g., if the desired application places
strong constraints on what makes a
good representation
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o Start with a one-hot vector for each word
In the vocabulary

* Modified bag-of-words representation

Learn I ng » Element for a given word is set to 1
New * All other elements are setto O

Embeddings

« Randomly initialize the embedding layer

« Maintain a separate vector of weights for
the embedding layer, for each vocabulary
word
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Neural Language Model
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Formal Definition: Learning New
Embeddings

 Letting E be an embedding matrix of dimensionality d, with one row for
each word in the vocabulary:

*e=(Ey, Ex, - Ex, )
*h= oc(We+Db)
e z="Uh
* y = softmax(z)
« Optimizing this network using the same techniques discussed for other

neural networks will result in both (a) a model that predicts words, and (b)
a new set of word embeddings that can be used for other tasks



Summary:
Neural
Networks
and Neural
Language
Models

10/22/19

Feedforward neural networks are multilayer networks in
which all units in a layer are connected to all units in the
previous and next layers (but no units in the current layer)

Neural networks have input, hidden, and output units

Values output by the output layer need to be converted to
probabilities using specific activation functions

« softmax converts output values into a set of
probabilities proportional to the exponentials of the
input values

Training neural networks requires a loss function and an
optimization algorithm

With multilayer networks, losses need to be
backpropagated all the way to the input layer when
optimizing the model’'s weights

Neural language models represent context using dense
embeddings rather than n-grams

Neural language models can either use pretrained
embeddings for this purpose, or they can learn their own
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